
JASSDA TRACE ASSERTIONS∗

Runtime Checking the Dynamic of Java Programs

Mark Brörkens
University of Oldenburg

Mark.Broerkens@informatik.uni-oldenburg.de

Michael Möller
University of Oldenburg

Michael.Moeller@informatik.uni-oldenburg.de

Abstract
Research into runtime checking of programs mainly concentrates on the De-

sign by Contract concept, as proposed by Meyer for the programming language
Eiffel. The goal is here to check whether a program fulfills certain conditions in
certain states, i.e method entry and exit points. Jass (Java withassertions)[1] tries
to extend this to behavioural properties by adding trace assertion for dynamical
checking (Jass 2). But the Jass approach is a precompiler attempt, so we cannot
handle programs without its source code.

jassda, theJass DebugArchitecture, is also designed to provide a trace asser-
tion facility, but in contrast to the classic Jass 2 trace assertions these assertions
are not precompiled into source code but are checked at runtime via the Java
Debug Interface (JDI).

Keywords: jassda, Jass, Java, runtime checking, debugging, JDI, CSP

Introduction

Todays software systems become more and more complex. But the com-
plexity is not the only problem to handle. Software also gets more distributed,
e.g. as consequence of the growing number of web-based software systems.
This results in a special interest in tracking the correctness of these software
systems, but formal specification techniques and especially static checking of

∗This work was partially funded by the German Research Council (DFG) under grant OL 98/3-1.

In: Ina Schieferdecker, Hartmut K̈onig and Adam Wolisz (Eds.), “Trends in Testing Communicating Sys-
tems”,International Conference on Testing of Communicating Systems, Berlin, March 2002, pp. 39–48.

programs against those specification are the topic of current research (see for
instance [8, 9, 14]), and currently is often not applicable for large software
systems.

A practical approach to formal methods in applications is runtime checking.
Design by Contract, as proposed by Meyer for the object-oriented language
Eiffel [13], is a lightweight formal technique that allows for dynamic runtime
checks of specification violations. The name refers to a contract which is made
between the client and the supplier of a component and that deals with conditions
before and after using such a component. The trace assertions approach extends
the traditional Design by Contract concept by dealing with the dynamic order
of such component uses: which component may use which other component
and what third component has possibly to be used before. So we are interested
in when the use of a component begins and when it ends. For this reason the
entry and exit points becomeeventsthat we want to observe, and therefore a
program run emits a sequence, i.e. atrace, of those events.

To describe the desired behaviour of a program we define CSP-like parallel
processes [7] that specify all those traces that we want to allow. In some cases
certain events may not matter for the correct execution of a program, so the
events of interest are restricted to the set of events mentioned in the specifying
process, called thealphabetof the process. This alphabet helps to reduce the
amount of events to be emitted by the program, since this might be an important
performance aspect as [11] shows.

In contrast to the Jass 2 trace assertions [1],jassda does not precompile Java
source code to emit and check events but uses the Java Debug Interface (JDI) to
do this. Thereforejassda neither has to modify the source code of the observed
Java program nor it has to insert event emitting Byte-code1, in contrast to e.g.
JavaMAC [10].

The following section gives an architecture overview. Section 2 will intro-
duce the CSP-like process notion and section 3 will shortly describe the tool at
work.

1. jassda architecture

For checking dynamic behaviour at runtime we need events from the program
as described in the introduction. But we will only accept a minimum amount
of changes to the observed Java program. Therefore our concept is to use the
Java Debug Interface for emitting those events.

In the practical part of the Jass Debug Architecture we accept any informa-
tion, that we can retrieve from a number of Java Virtual Machines (JVM) as
events. This is almost any information that the Jass 2 trace assertion (JassTA)

1jassda performs slight modification on the Java Byte-code to enable full functionality

2

jassda Trace Assertions 3

could access. Of course, the JDI provides more information than we used in
JassTA because we have almost direct access to the JVM. The only informa-
tions that we cannot access directly are the return values of method calls. To
overcome this limitation the Java Byte-code of the observed program is slightly
modified at class loading time using the Byte Code Engineering Library [3].
Since such a JVM executes the program that we want to check (or debug), we
call it Debuggee.

The so modified Java program is run as usual but through the JDI we set
breakpoints when to emit the events that we need. So starting the program
begins with connecting to the Debuggee and registering events we are interested
in. Registering these events and receiving them from the JVMs is done by a
central component, thejassda Broker.

In the same way as there are more than one Debuggee connected possibly to
the Broker, there may also be more than one consumer for the events that the
Broker provides. Figure 1 shows this architecture ofjassda. These consumers
of events are calledjassda modules.

Logger Trace-Checker ...

GUI Broker Registry

JVM
Debuggee 1

JVM
Debuggee 2

...

ja
ss

da
co

re
m

od
ul

es

Figure 1. Architecture ofjassda

One of these event listening modules is thejassda Trace–Checker. The
Trace–Checker reads one or more trace specifications and builds an internal
process representation for the set of legal traces (see section 2). With every
received event the Trace–Checker will ensure that this actual sequence of events
is a legal trace of the specification’s process representation, or stop the program
and inform the user of the specification violation (see section 3). Other modules
may handle events in a completely different way: e.g. the Logger, an output
listener, simply logs those events to a text file.

4

2. CSP–like processes

CSP (Communicating Sequential Processes) was introduced by Hoare [7]
for the specification of event driven distributed systems. As a simple example
consider the recursive equationP = start→ stop→ P defining a processP
that will first accept the eventstart, next it will only acceptstop and afterwards
behave likeP again. So the allowed traces ofP are〈〉, 〈start〉, 〈start, stop〉,
〈start, stop, start〉, etc. The example shows the prefix operator→ prefixing a
process by a single event. There are also operators for e.g. choice and parallel
composition.

The Trace–Checker ofjassda uses a CSP dialect,CSPjassda, to specify the
trace of events, that a program may emit during its execution. We chose CSP
as specification language for two reasons: First, CSP is not new so that many
people put research power into it, that we can now profit from. Second, our
main research interest is the step from a formal specification given in CSP-OZ
[4, 5], which is a combination of CSP [7] and Object-Z, to Java, and therefore
it is natural to use CSP.

Since Java allows threads and (of course) multiple instances of a class, the
exact specification of an event is not easy and in most cases not what we want.
ThereforeCSPjassda uses event sets instead of single events in its prefix opera-
tor. This is the main difference between traditional CSP dialects andCSPjassda,
although this might be seen as syntactical shortcut for an external choice and
continuing with the same process in any case.

2.1 Event Sets

Event sets inCSPjassda are described by their properties. A property of
an event is e.g. the thread that emitted the event, the object instance, the
methods name, etc. The decision whether an event belongs to an event set is
made by a handler class that must be specified in every declaration of an event
set. This class could be user defined, but most cases may be covered by the
classjass.debugger.jdi.eventset.GenericSet. The handler class will
evaluate further (handler specific) properties. E.g. theGenericSet will check
for the propertyeventtype, that could have three different values:begin for
the entry point of a method call,end for normal termination andexception for
exceptional termination of a method. Another property ismethod, that allows
to specify the method’s name. The configuration file allows to specify a default
handler, that will be used if the handler property is missing.

In combination with the prefix operator we allow operations on event sets.
This makes it convenient to describe sets of events with almost equal properties.
Typically we use the intersection to express that an event must have all properties
specified by the given event sets. In the syntax we use a dot or exclamation

jassda Trace Assertions 5

mark, because intersection is similar to CSP’s communication over channels.
We also allow unification of event sets indicated by a comma or plus symbol.

As another analogy to CSP’s communication over channels we allow to store
properties of an accepted event in a new event set, a variable, to refer to these
properties in the further process. As this is like reading information from a
channel, we use the question mark to indicate the binding of an event set to a
variable.

2.2 Process Construction

Other basic constructs and operators ofCSPjassda are very similar to those
of CSPM , the CSP dialect of the model checker FDR [6]. First there are some
basic processes:STOP indicates a deadlock2, TERM indicates a terminating
process3, i.e the termination of the virtual machine,ANY accepts an unbounded
amount of any events – often known as CHAOS.

For given ProcessesP,Q we currently allow prefixing (eventset -> P),
choice (P []Q), parallel composition (P ||Q) and guarded (recursive) invo-
cation of process identifiers. Parallel composition and choice are also available
as “quantified versions”: like binding event properties to event set variables,
you may choose between processes by the property of the event.

2.3 Example

To give an impression of how program behaviour may be specified by us-
ing CSPjassda processes, we will give a simple example. Consider a class
HelloWorld with two methodsstart andstop. For every instance of the
class we need to ensure that calls to this methods alternate, beginning with
start.

Our first step is to declare the necessary event sets. Everything we are
interested in, deals with an object of classHelloWorld. All events with this
class property can be specified by using the predefinedGenericSet handler.

eventset helloWorld
{ handler ="jass.debugger.jdi.eventset.GenericSet",

class ="HelloWorld" }

The next step is to specify the method events. Again theGenericSet is
used to select all events that indicate the entry point (eventtype="begin") of
a methodstart. We do not fix the class because this is done by intersection

2The STOP process is introduces although no real program should ever reach this state and we can not
determine if a program has reached this deadlock.
3most CSP dialects name it SKIP

6

in the process definition. Assuming thatGenericSet is configured as default
handler the event sets forstart andstop are specified as follows.

eventset start { eventtype="begin" method="start"}
eventset stop { eventtype="begin" method="stop"}

Now we want to specify, that the correct behaviour depends on the instance of
the class, that produces an event. This is done by a quantified parallel operator,
meaning that the following (parameterized) process is instantiated for every
object instance property of an event.

main() {
||x:[instance] @ helloWorldProc(x)

}

The parameterized processhelloWorldProc finally specifies the alternation
of start andstop. Recall that the parameterx stores the instance property of
the events that are directed to this subprocess.

helloWorldProc(x) {
helloWorld.start.x ->

helloWorld.stop.x -> helloWorldProc(x)
}

The process may be read as: “Whenever an event withHelloWorld as its class
property arrivesand this is a method entry event with the method property
start and the instance property is the one stored in the parameterthen it must
be followed byan event withstop method but same instanceand then it must
be followed bythe behaviour ofhelloWorldProc (i.e. the same behaviour).

3. Checking Session withjassda

A jassda session is configured by files in XML format. The main con-
figuration file is given tojassda as command line option. This configuration
file specifies the modules (with their configuration) and the connections to the
debuggees.

When starting upjassda with the trace assertion module, you will get the
graphical user interface, that is shown in figure 2. The main window wraps
four MDI frames. One for the trace assertion specification, one for the logging
output, one for the CSP representation and the last for the specification of the
virtual machine.

First all but the log frames are empty. The next step is to write down the
trace specification. The user edits the buffer of the specification window or
loads a file into it. To check the specification, the “parse” button can be used.
In case of an error, these messages go into the log frame, otherwise a graphical

jassda Trace Assertions 7

Figure 2. GUI of jassda’s trace assertion module

process representation will appear. Finally the “debug” button will start the
Debuggee (including its JVM) and the state of its JVM will be displayed during
the debugging session.

The test of the checking procedure will be that the trace of the current pro-
cesses restricted to those events of the specification is included in the set of
traces of the specifying process(es). Whenever an event arrives, the checker
will test whether the process accepts it. If the event is not allowed, the debuggee
will be stopped, otherwise the process representation will be modified in a way
that the new process is a representation of the old one after accepting the event.
In case of nondeterminism in the specification4 the newly constructed process
will delay choices as long as possible to keep track of all future possibilities.

4. Conclusion and Perspectives

Runtime checking of programs and especially checking Java programs is
nothing new. But the concept of checking traces at runtime is a newer concept.
The more frequently used technique is to emit as many events as possible, store
them and do static analyses on that data. Runtime checking has the advantage

4This may happen in case that the event sets of a choice intersect.

8

that an error can be detected as soon as it happens and so it could help to reduce
the harm of that error.

jassda provides runtime trace checking on byte-code level. The specifica-
tions are not related to the source code of a program, so that even third party
code can be handled by the specification. The second advantage is that the user
does not have to recompile her or his program for testing, or when debugging
is done. This reduces the possibility of faults that are caused by preparing the
code for debugging (or removing these additions).

In contrast to the trace assertions (JassTA) of Jass 2 thejassda architecture
and the Trace-Checker were designed to be useful also as a stand alone tool
for the “ordinary” Java programmer5. The JassTA have limitations, especially
in distinguishing object instances, and are not thread safe.jassda overcomes
these limitations and therefore might be suitable for debugging stand-alone
applications, applets and servlets. Future experiences will show whetherjassda
is this kind of “Web-capable”.

The current version ofjassda was developed in a master’s thesis [2] and
therefore the implementation must be seen as a prototype. The most interesting
question might be the question of the overhead, that is produced by the debug
procedure. What is the relation between execution time with and without de-
bugging? Another interesting question is which size of programs and which
maximum number of debuggees and modules can be treated. We will try to
answer these questions in the near future.

As further perspective we will work on the tool itself. We plan to add more
operators and to make the specification language more comfortable. These
extensions should lead us to be able to specify trace assertions that help us to
check Java programs against formal specifications written in CSP-OZ [4, 5].
The goal is a mainly automated tool that will translate CSP-OZ toCSPjassda
and JML [12] specifications preserving the semantics.

Acknowledgments

We would like to thank the members of the Semantics Group and especially
Jochen Hoenicke for a lot of interesting and productive discussions that made
the current state ofjassda possible.

5The primary design goal of JassTA was to build the counterpart of the CSP process in a CSP-OZ class.

References

[1] Detlef Bartetzko, Clemens Fischer, Michael Möller, and Heike Wehrheim. Jass – java with
assertions. In Klaus Havelund and Grigore Roşu, editors,Proceedings of the First Work-
shop on Runtime Verification (RV’01), Paris, France, July 2001, volume 55 ofElectronic
Notes in Theoretical Computer Science. Elsevier Science, 2001.

[2] Mark Brörkens. Trace- und Zeit-Zusicherungen beim Programmieren mit Vertrag. Mas-
ter’s thesis, University of Oldenburg, January 2002. in German.

[3] Markus Dahm. Byte Code Engineering with the BCEL API. Technical Report B-17-98,
Freie Universiẗat Berlin, Institut f̈ur Informatik, April 2001.

[4] C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowman and J. Derrick,
editors,Formal Methods for Open Object-Based Distributed Systems (FMOODS ’97),
IFIP, pages 423–438. Chapman & Hall, 1997.

[5] C. Fischer.Combination and Implementation of Processes and Data: From CSP-OZ to
Java. PhD thesis, University of Oldenburg, 2000.

[6] Formal Systems (Europe) Ltd.Failures-Divergence Refinement: FDR 2, Dec. 1995.
Manuscript.

[7] C. A. R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.

[8] M. Huisman and B. Jacobs. Java program verification via a Hoare logic with abrupt ter-
mination. In T. Maibaum, editor,FASE 2000: Fundamental Approaches to Software En-
gineering, volume 1783 ofLecture Notes in Computer Science, pages 284 – 303. springer,
2000.

[9] K. Huzing, R. Kuuiper, and SOOP. Verification of object-oriented programs using class
invariants. In T. Maibaum, editor,FASE 2000: Fundamental Approaches to Software En-
gineering, volume 1783 ofLecture Notes in Computer Science, pages 208 – 221. springer,
2000.

[10] Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Mahesh Viswanathan.
Java-mac: a run-time assurance tool for java programs. In Klaus Havelund and Grigore
Rosu, editors,Electronic Notes in Theoretical Computer Science, volume 55. Elsevier
Science Publishers, 2001.

[11] David Kortenkamp, Tod Milam, Reid Simmons, and Joaquin Lopez Fernandez. Collecting
and analyzing data from distributed control programs. In Klaus Havelund and Grigore

9

10

Rosu, editors,Electronic Notes in Theoretical Computer Science, volume 55. Elsevier
Science Publishers, 2001.

[12] G. Leavens, A. Baker, and C. Ruby. Preliminary design of JML: A behavioral interface
specification language for java. Technical report, Department of Computer Science, Iowa
State University, 1998, revised 2001.

[13] B. Meyer.Object-Oriented Software Construction. ISE, 2nd edition, 1997.

[14] P. Müller and A. Poetzsch-Heffter. Modular specification and verification techniques for
object-oriented software components. In G. T. Leavens and M. Sitaraman, editors,Foun-
dations of Component-Based Systems. Cambridge University Press, 2000. (to appear).

