
RV’02 Preliminary Version

Dynamic Event Generation for Runtime
Checking using the JDI 1

Mark Brörkens 2

OFFIS, R & D Division Embedded Systems
Escherweg 2, D–26121 Oldenburg, Germany

Michael Möller 3

University of Oldenburg, Department of Computer Science
Postbox 2503, D–26111 Oldenburg, Germany

Abstract

Approaches to runtime checking have to track the execution of a software system
and therefore have to deal with generating and processing execution events. Often
these techniques are applied at the code level – either by inserting new source code
prior to the compilation or by modifying the target code, e.g. Java byte code, before
running the program.

The jassda [4,3] framework and tool enable runtime checking of Java programs
against a CSP-like specification. For generating events it uses the Java Debug Inter-
face (JDI) and thus no modifications to the code are necessary. Another advantage
is that events are generated on demand, i.e. dynamically at runtime it is determined
which events to generate for the current debug run without modifying the program
itself. This paper shows how this event generation is done by the jassda framework.

1 Introduction

Software systems have grown substantially since the invention of micro com-
puters. This trend cannot only be seen in the size of programs, but also in
application areas. The growth of the Internet with more and more dynamic
web-pages providing new services for end-users is another category of this
complexity. Today’s software systems are distributed, work in parallel and
have to communicate.

1 This work was partially funded by the German Research Council (DFG) under grant OL
98/3-1.
2 Email: Mark.Broerkens@offis.de
3 Email: Michael.Moeller@informatik.uni-oldenburg.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:Mark.Broerkens@offis.de�
mailto:Michael.Moeller@informatik.uni-oldenburg.de�


Brörkens and Möller

In all these software systems correctness becomes more important but is
harder to prove due to the growing complexity. Traditional methods to prove
this correctness are Modelchecking [5] and Program Verification [8,1]. The
development of program verification techniques for object-oriented languages
(and its support by theorem provers) is a topic of current research (see for
instance [9,10,18]) and have been successfully applied in domain specific areas
of software development. However, these techniques are often only viable with
specific knowledge of underlying theorem provers and are therefore restricted
to experts.

Runtime checking is a lightweight formal technique that will undoubtedly
not exceed the strength of the above heavyweight techniques. In this case only
the current run of the program is checked against the specification, but it is
easier to apply to (even large) systems and to be used by non-experts.

For the Java programming language many runtime checking approaches
concentrate on the Design by Contract concept as proposed by Bertrand Meyer
for the language Eiffel [16]. The name refers to a contract which is made
between the client and the supplier of a component. The contract states the
obligations of the client before using a method and the constraints provided
by the supplier after use of the service. The sytax of these conditions, called
assertions, is usually close to the programming language. Tools that provide
this for Java are e.g. jContractor [11], iContract [14] or the runtime-checker
of JML [15]. The Jass 4 tool [2] in addition provides Trace Assertions that
allow to state conditions describing the order of events, i.e. method entry and
exit points.

In the Trace-Checker of jassda 5 these Trace Assertions are extended to
support Java programs in a more general way. The event emitting mechanism
of Jass was not satisfying, since the event emitting code for every possibly
interesting event had to be inserted. As consequence a lot more events than
needed were generated and events for classes without source code could not
be generated. Dynamic “on the fly” generation of events is important to
reduce the huge amount of possible events like in Morphine [6]. But to modify
the system-under-test (SUT) as less as possible, jassda uses the Java Debug
Interface (JDI) to let the virtual machine generate these events. As a positive
side-effect it is also possible to monitor distributed systems of communicating
Java programs, because a number of Java virtual machines may be connected.

The next section will describe the architecture of the jassda framework to
explain the use of the JDI. The following sections describe the JDI and the
event model used in jassda. Further a benchmark, a conlusion and an overview
of related work is given.

4 Java with assertions
5 Jass Debugger Architecture

2



Brörkens and Möller

2 The jassda Framework – Motivation

The jassda tool allows the runtime checking of a system of Java programs
against a CSP-like specification. In this specification language events have to
be consumed and it has to be decided whether they are conforming with the
specification. To get those events from the system-under-test (SUT), i.e. a
system of Java programs, a general event extraction and dispatching facility
was developed, the jassda framework. This framework might also be used for
other purposes, e.g. just logging events 6 , or to stimulate a program for test
purposes.

The architecture of this framework is shown in figure 1. At the lowest
level the debuggees are shown, which together form the system-under-test.
These debuggees are connected to the Broker which is the central component
of the jassda framework. The “Registry” database, an optional graphical user
interface and the Broker build the jassda core. jassda modules are connected
to this core requesting and consuming events.

Logger Trace-Checker ...

GUI Broker
other core

components ...

JVM
Debuggee 1

JVM
Debuggee 2

...

ja
s

s
d

a

c
o

re
m

o
d

u
le

s

JPDA

CSPjassda

Fig. 1. Architecture of jassda

The connection between the debuggees and the jassda core transports the
events that we want to observe 7 . This connection is established by using
the Java Platform Debugger Architecture (JPDA) as described in the next
section.

3 Generating Execution Events

One of the aims of the design, when developing the jassda tool, was to achieve a
method for monitoring Java programs reduced to a minimum of modifications

6 This application of the framework is implemented by the “Logger-Module”
7 Additionally it will also send back control information

3



Brörkens and Möller

to the program itself. To achieve this, the Java Debug Interface (JDI) [19] is
used.

3.1 The Java Debug Interface (JDI)

Back End

VM

Back End

UI

JVMDI

JDWP

JDI

Java
Virtual

Machine
Debug

Interface

Java
Debug
Wire

Protocol

Java
Debug

Interface

Debugger

Comm-
Channel

Debuggee

Fig. 2. Java Platform Debugger Architecture

Current Integrated Development Environments for Java like Sun Forte for
Java, Borland JBuilder or IntelliJ IDEA contain a debugger, based on the Java
Platform Debugger Architecture (JPDA) for communicating with the system
that is to be debugged. The JPDA consists of two programming interfaces,
i.e. the Java Virtual Machine Debug Interface (JVMDI) and the Java Debug
Interface (JDI), and one protocol, i.e. the Java Debug Wire Protocol (JDWP),
as shown in figure 2. The JVMDI is a low-level native interface that defines
the services which a Java virtual machine must provide for debugging. The
second interface, the JDI, provides a high-level Java programming language
interface. The format of information and requests transferred between the
debuggees and the debugger Front-End is defined by the JDWP.

In addition to well known functions like setting breakpoints and watching
variables, the JDI provides an extended facility for monitoring and manipu-
lating the execution of a Java program.

During runtime the debuggees can be configured to generate events in case
of several situations, e.g. a method has started or terminated, an exception
has occurred, a breakpoint is reached, a class is loaded/unloaded, read/write
access to a variable, a thread was started/stopped. After having emitted an
event the debugging VM can be configured to suspend execution and thus
allow a deep view into the VM. For example: for each currently running
thread its stack trace can be analysed. For each class the inner structure like
super-classes and implemented interfaces can be read. Even the byte code of
every method can be accessed for further analysis.

4



Brörkens and Möller

3.2 jassda and the JDI

As shown above, the JDI allows generating events for many situations that
might occur during the execution of a Java system. The main function of the
core layer of the jassda framework is to determine which events are required
for the analysis of the given Java system and to configure the debuggees for
the generation of those events, only. The set of events required for a debug
run depends on the installed modules and their configurations. The execution
of a debug run with the jassda framework can be separated into two phases.

3.2.1 Initial Phase

In the initial phase the jassda framework connects to the debuggees using
the JDI and suspends their execution. Then the loaded classes are statically
analysed in order to determine the set of events that might be generated during
their execution. After that, the modules are asked which of these events they
are interested in. Accordingly, the generation of those events is configured
using the JDI.

3.2.2 Runtime Phase

After having configured the events, the execution of the debuggees are re-
sumed. The execution is suspended again as soon as a situation of interest
occurs in one of the debuggees and an event is generated. The broker receives
this event and distributes it to the modules for further processing. Through
the data transferred with the event the modules have full access to the JDI
and therefore may perform any action the JDI supports, e.g. they can read
and manipulate the values of variables or find out which situation triggered
the current event.

3.2.3 Handling Dynamic Class Loading

As Java supports loading classes dynamically during runtime, events that
notify about loading classes are enabled. In this way the jassda framework
keeps informed about new classes and it configures the event generation for
them, as described for the initial phase.

3.2.4 Obtaining Return-Values of Methods

For many utilisations of runtime-checking obtaining the return-value of a
method is of great importance. Unfortunately, the JDI does not support
access to return-values of methods, directly. For the jassda framework we de-
veloped a solution to find out that value without having to modify the JDI
and therefore loose the benefit of the platform-independence.

The main idea for accessing the return-value is to write the value into a
private variable and generate an event immediately before the method termi-
nates. To achieve this, the jassda framework provides a special class-loader
that patches the byte code of any method for which a module requires the

5



Brörkens and Möller

return-value during runtime.

4 Processing Execution Events

The jassda framework provides an infrastructure for developing debugger-
applications that have to monitor the execution of Java systems. A high-level
interface enables the developer to plug in one or more modules for processing
the events delivered by the framework. These modules must implement two
basic functions. On the one hand they have to decide which events they are
interested in, i.e. the alphabet. This is required by the core layer to configure
the generation of events from the debuggees, accordingly. On the other hand
they need to handle the sequence of events delivered by the broker one by one
during runtime.

4.1 Modules and Alphabets

To determine the alphabet of a registered module, the module has to provide
request methods that are used by the Broker. During startup and whenever
a new class is loaded the Broker asks each module if it is interested in events
emitted during execution of that class. In case of positive result the Broker
requests a list of event types 8 that the module wants to receive. Concerning
this list the Broker analyses the new class and creates dummy events for all
events that could belong to the module’s alphabet. In the final step the module
decides for all these possible events which do belong to its alphabet. This
decision is used by the Broker to configure the debuggees for event emitting
and for dispatching the events delivered by the debuggees during runtime.

The architecture of the jassda framework includes the capability of recon-
figuration of the event emitting mechanism. New events can be triggered.
Enabled events can be disabled during the debug run. This feature will be
used in future versions of the jassda tool.

Currently there are two modules available: the Logger module and the
Trace-Checker module. Together with the jassda framework they form the
jassda tool.

4.2 Logger Module

The Logger module implements the function to log the execution of a Java
system by writing its sequence of events into a file. The amount of information
that can be derived from an event as well as the alphabet can be configured
in an XML-based configuration file.

Figure 3 shows such a configuration. The output is directed to the file
sequence.log in the format given by the template definition. In this defini-
tion field-identifiers are replaced by the property values of the received events.

8 These event types are taken from the JDI, e.g. method entry, method exit, etc.

6



Brörkens and Möller

<?xml version="1.0" encoding="UTF-8"?>
<logger>

<file name="sequence.log"/>
<event>

<template>%class%.%method%(%arguments%) = %returnvalue%</template>
</event>
<include>

<eventset class="jass.debugger.jdi.eventset.GenericSet"
field="class"
argument="jass.examples.*"/>

</include>
<exclude>

<eventset class="jass.debugger.jdi.eventset.GenericSet"
field="class"
argument="sun.*"/>

</exclude>
</logger>

Fig. 3. Configuration of the Logger module

The events to include and to exclude are determined by handler classes de-
fined through the class property of eventset. The GenericSet handler,
that comes with jassda will be sufficient in most cases, but one may also write
their own event filters.

It would be easy to write similar modules that write those events to a
database via JDBC, the Java database connection. In any case the logged
data can be used for analysing the program, e.g. in the way it is done by
Kortenkamp et al. in [13]. Therefore when using this module, jassda performs
comparable operations like other event collecting tools.

4.3 Trace-Checker Module

More comfortable is the use of a CSPjassda specification to not only receive
events but in addition to analyse the received events on the fly. This trace
checking is very similar to trace assertions in Jass, but it is generalised to a
more expressive language. A more detailed view on the CSP dialect CSPjassda

is given in [17] and in the appendix, but with a small example we will illustrate
how to determine the Trace-Checker’s alphabet from a given specification.

In figure 4 the normal behaviour of applets is specified. The first lines
define event sets. Event sets are used to group events. Often we do not know
all properties of an event or some aspects are not relevant in a specification.
But the alphabet of the module is not directly built by the union of these
event sets.

The alphabet of the specification is built by the alphabet of the first process
in the specification – in this example the alphabet of applets() has to be
used. To calculate this alphabet all events mentioned in this process are
collected. Since this process is built on a parallel composition of the process

7



Brörkens and Möller

eventset applet { instanceof="java.applet.Applet" }
eventset init { method="init" }
eventset start { method="start" }
eventset stop { method="stop" }
eventset destroy { method="destroy" }

applets() {
||i:[instance] @ appletbehaviour(i)

}

appletbehavior(inst) {
applet.inst.init.begin -> applet.inst.init.end
-> appletrun(inst)

}

appletrun(i) {
( applet.i.start.begin -> applet.i.start.end

-> applet.i.stop.begin -> applet.i.stop.end -> aplletrun(i)
) [] appletdestroy(i)

}

appletdestroy(inst) {
applet.inst.destroy.begin -> applet.inst.destroy.end -> STOP

}

Fig. 4. CSPjassda specification “applet behaviour”

appletbehaviour, it is necessary to take the union of all alphabets of the
subprocesses for each object instance.

The definition of appletbehaviour starts with the first event set that we
have to add to the alphabet. applet.inst.init.begin defines an event set
that is built by the intersection of the four parts. applet defines the set of all
events that are emitted by classes that are an instance of java.applet.Applet.
init defines all events fired by methods named init. begin is a predefined
event set describing all events of the method begin type. The event set inst
is the parameter of the process, it is undefined when calculating the alphabet
and will not restrict the event set. So this first expression defines the set of
events that are fired whenever a method init of any instance of an applet
begins.

Continuing with this calculation we will end up in an alphabet of all events
triggered by invocation and normal termination of the methods init, start,
stop and destroy for all instances of classes extending Applet. To forbid
certain events during the debug run it is also possible to state the alphabet of
a process explicitly.

8



Brörkens and Möller

5 Benchmark Example

In order to gain information about the performance of the jassda tool checking
Java applications, a small program is used which sorts a list of 10000 numbers
using the bubblesort algorithm. This program provides two implementations
of the algorithm. The first one calculates in one method and therefore requires
one method invocation. The second implementation puts the inner loop into a
separate method and requires 10001 method invocations. The bubblesort pro-
gram is executed by the Sun Java 1.3 virtual machine (in classic and hotspot
mode) and by the Sun 1.4 virtual machine under Windows 2000 on a Pentium
(1200 MHz) system. Three different configurations are compared:

(i) The program is executed standalone without any monitoring.

(ii) The Java virtual machine is configured to run in debug-mode

(iii) The Java virtual machine is configured to run in debug-mode and the
jassda tool is attached logging method invocations into a file.

method invocations (events) 1 10001

standalone j2sdk1.3 classic 9,2s 9,2s

j2sdk1.3 hotspot 1,0s 1,2s

j2sdk1.4 hotspot 1,0s 1,1s

debug-mode j2sdk1.3 classic 39,0s 39,0s

j2sdk1.3 hotspot 10,7s 10,7s

j2sdk1.4 hotspot 1,1s 1,1s

jassda attached j2sdk1.3 classic 40,2s 65,3s

j2sdk1.3 hotspot 11,2s* 1805,3s*

j2sdk1.4 hotspot 11,2s* 1804,0s*

* with less than 1% CPU usage

Table 1
Benchmark results

As shown in table 1 the sorting of 10000 numbers in the standalone con-
figuration requires 9,2s in classic mode and round about 1s in hotspot mode.
Enabling the debug-mode increases the execution time of the Java 1.3 VM by
up to 10 times. The execution time of the Java 1.4 VM keeps almost constant,
due to its full-speed debugging support. Attaching the jassda tool reduces the
performance of the Java 1.3 VM in classic mode compared to the debug-mode
by factor 1.5 . The last two lines show that the execution time dramatically
increases if the virtual machine is in hotspot mode and has to handle break-
points which the jassda tool uses for indication of method invocations. In
this case the CPU usage is below 1% whereas otherwise 100% CPU usage is
required. The reason for the low CPU usage and long execution time is still

9



Brörkens and Möller

beeing examined.

6 Conclusion

In this paper we presented the mechanism of event emitting used in the jassda
framework. The implementation of a prototype has proven that this is a viable
method to debug some small Java programs. But these experiments have also
shown the limitations of our approach.

The jassda framework works fine, if we can reduce event generation through
the dynamic concept of “on demand” or “on the fly” generation. To debug an
efficient algorithm with very limited code to execute between needed events
will reduce the performance dramatically.

But the aim was to have a method to debug distributed systems so that the
focus lies on communication events. In contrast to Jass the motivation for the
jassda tool was not to be able to perform Design by Contract runtime checks
– although this might possibly be done by new modules in future versions.
Whereas Design by Contract assertion build the counterpart of a state based
specification the jassda framework should enable us to build a counterpart for
a dynamic process based specification. For this reason we see jassda more as
an addition to state based approaches than as a replacement.

In addition the limitations can also be seen as an advantage: a run with
low amount of events is cheap and in the same way it is cheap to switch the
set of events for a second run. Only the initial phase is influenced by the new
set of events, but no byte-code modification is necessary even though only the
needed events for the second run will be generated. So we presume that the
jassda framework will have a considerable advantage in environments where
event sets are limited but do often change.

6.1 Related Work

The idea to reduce the amount of events to those that are needed in the current
debug run was already introduced in Morphine [6] for programs written in
PROLOG. But the code for the event filtering for Java programs is provided
by the Java virtual machine (VM) of the system-under-test, so that jassda
does not have to modify the byte code to insert statements or function calls
for event generation.

For the same reason jassda differs from Java-MaC [12], that performs ex-
actly that byte code modification. A primitive event definition language is
used to define events of interest. Using this definition event generating code
is inserted where needed. For this reason a new event specification means a
second patching of the Java byte code.

The idea of an event definition language, that separates the definition of
events from the source code, was also given by Gates et al. in [7]. But again
this technique uses automated program instrumentation to generate events

10



Brörkens and Möller

and thus does not generate them on demand.

6.2 Future Work

Beside a translation from a combined specification language to the input lan-
guage of the jassda Trace-Checker, we plan to clean up the source code and
provide it as an Open Source project via the jassda homepage 9 .

References

[1] Apt, K.-R. and E.-R. Olderog, “Verification of Sequential and Concurrent
Programs,” Springer-Verlag, 1997, 2nd edition.

[2] Bartetzko, D., C. Fischer, M. Möller and H. Wehrheim, Jass – Java
with Assertions, in: K. Havelund and G. Roşu, editors, Proceedings of the
First Workshop on Runtime Verification (RV’01), Paris, France, July 2001,
Electronic Notes in Theoretical Computer Science 55 (2001).

[3] Brörkens, M., “Trace- und Zeit-Zusicherungen beim Programmieren mit
Vertrag,” Master’s thesis, Universität Oldenburg (2002), in German.

[4] Brörkens, M. and M. Möller, jassda Trace Assertions, in: I. Schieferdecker,
H. König and A. Wolisz, editors, Trends in Testing Communicating Systems,
International Confernece on Testing Communicating Systems (TestCom),
Berlin, Germany, 2002, pp. 39–48.

[5] Clarke, E., E. Emerson and A. Sistla, Automatic verification of finite state
concurrent systems using temporal logic specifications: A practical approach,
in: Conference Record of the Tenth Annual ACM Symposium on Principles of
Programming Languages, ACM, 1983, pp. 117–126.

[6] Ducasse, M. and E. Jahier, Efficient automated trace analysis: Examples
with morphine, in: K. Havelund and G. Rosu, editors, Proceedings of the
First Workshop on Runtime Verification (RV’01), Paris, France, July 2001,
Electronic Notes in Theoretical Computer Science 55 (2001).

[7] Gates, A. Q., S. Roach, O. Mondragon and N. Delgado, Dynamics:
Comprehensive support for run-time monitoring, in: K. Havelund and G. Rosu,
editors, Proceedings of the First Workshop on Runtime Verification (RV’01),
Paris, France, July 2001, Electronic Notes in Theoretical Computer Science 55
(2001).

[8] Hoare, C. A. R., An axiomatic basis for computer programming, Comm. of the
ACM 12 (1969), pp. 576–580.

[9] Huisman, M. and B. Jacobs, Java program verification via a Hoare logic
with abrupt termination, in: T. Maibaum, editor, FASE 2000: Fundamental
Approaches to Software Engineering, Lecture Notes in Computer Science 1783
(2000), pp. 284 – 303.

9 http://jassda.sourceforge.net

11

http://jassda.sourceforge.net�


Brörkens and Möller

[10] Huzing, K., R. Kuuiper and SOOP, Verification of object-oriented programs
using class invariants, in: T. Maibaum, editor, FASE 2000: Fundamental
Approaches to Software Engineering, Lecture Notes in Computer Science 1783
(2000), pp. 208 – 221.

[11] Karaorman, M., U. Hölzle and J. Bruno, jContractor: A Reflective Java
Library to Support Design By Contract, Technical report, Department
of Computer Science, University of California, Santa Barbara (1998),
http://www.cs.ucsb.edu/~murat/jContractor.PDF.

[12] Kim, M., S. Kannan, I. Lee, O. Sokolsky and M. Viswanathan, Java-mac: a run-
time assurance tool for java programs, in: K. Havelund and G. Rosu, editors,
Proceedings of the First Workshop on Runtime Verification (RV’01), Paris,
France, July 2001, Electronic Notes in Theoretical Computer Science 55 (2001).

[13] Kortenkamp, D., T. Milam, R. Simmons and J. L. Fernandez, Collecting and
analyzing data from distributed control programs, in: K. Havelund and G. Rosu,
editors, Proceedings of the First Workshop on Runtime Verification (RV’01),
Paris, France, July 2001, Electronic Notes in Theoretical Computer Science 55
(2001).

[14] Kramer, R., iContract - the Java Design by Contract tool, Technical report,
Reliable Systems (1998), http://www.reliable-systems.com.

[15] Leavens, G., A. Baker and C. Ruby, Preliminary design of JML: A behavioral
interface specification language for java, Technical report, Department of
Computer Science, Iowa State University (1998, revised 2001).

[16] Meyer, B., “Object-Oriented Software Construction,” ISE, 1997, 2nd edition.

[17] Möller, M., Specifying and Checking Java using CSP, in: Workshop on Formal
Techniques for Java-like Programs - FTfJP’2002, Technical Report NIII-R0204,
Computing Science Department, University of Nijmegen, 2002, (to appear).

[18] Müller, P. and A. Poetzsch-Heffter, Modular specification and verification
techniques for object-oriented software components, in: G. T. Leavens and
M. Sitaraman, editors, Foundations of Component-Based Systems, Cambridge
University Press, 2000 (to appear).

[19] Sun Microsystems, Java Platform Debugger Architecture Documentation
(1999), http://java.sun.com/products/jpda/doc/.

A CSPjassda Semantics

In this appendix we will briefly describe the basic elements of CSPjassda and
define the operational semantics, that is used during runtime checking.

A.1 Event Sets

Event sets are defined by a number of properties, i.e. key value pairs, enclosed
in curly braces. A property named handler is required to specify a Java

12

http://www.cs.ucsb.edu/~{}{}murat/jContractor.PDF�
http://www.reliable-systems.com�
http://java.sun.com/products/jpda/doc/�


Brörkens and Möller

handler class that is responsible for deciding whether a JDI event belongs
to the current set or not. Other properties a read by the handler class to
configure it.

For most cases the class GenericSet, that comes with the jassda Trace-
Checker will do fine. Therefore this is the default if no handler was specified.
The current implementation of GenericSet will accept a number of properties,
e.g. to specify the class, the method, etc. User defined classes are also allowed
to be used as handler classes and therefor will have full access to the JDI
events.

By using the eventset keyword event sets are bound to the identifier that
follows the keyword.

We allow intersection (“.” or “!”) and union (“+”) of event sets. This
allows one to state that the current event should have the properties of both
event sets or it should have the properties of at least one event set.

Finally new event sets can be defined “on the fly” during the debug run.
Whenever an event is accepted (see next sections), and thus is a member of
a current event set, the properties of the current event may be used to define
the new event set. This is done by adding a “?” to the event set definition
followed by the variable identifier and the mapping. Again, this mapping is
done by a handler class, with MappingEventSet as default implementation.

To give an example we assume that first and second are defined event
sets. Than an event set first.second?third:[arg0="arg1"] will accept all
events that belong to both event sets, first and second, and when an event
is accepted a new event set will be defined with identifier third, that will
match all events with a first argument that equals the second argument of the
current event.

A.2 Processes

Currently the jassda Trace-Checker accepts two basic processes: STOP and
TERM where STOP will accept no event and TERM will only accept termination
events of the debuggees’ virtual machines.

By prefixing a process with an event set we define a new process, that first
will only accept an event belonging to the event set and then behave like the
prefixed process.
Syntax:

Process ::= eventset -> Process

Semantics:

es -> P
ev−→ P

where ev ∈ es

External choice will split split up the behaviour into two branches but
avoids nondeterminism.
Syntax:

Process ::= Process1 [] Process2

13



Brörkens and Möller

Semantics:

P
ev−→ P ′,¬∃Q′ : Q

ev−→ Q′

P[]Q
ev−→ P ′

Q
ev−→ Q′,¬∃P ′ : P

ev−→ P ′

P[]Q
ev−→ Q′

P
ev−→ P ′, Q

ev−→ Q′

P[]Q
ev−→ P ′[]Q′

Quantified external choice will bind a new event set variable.
Syntax:

Process ::= []var:[map] Process1(var)

Semantics:

P (x)
ev−→ P ′(x)

[]v:[map]P (v)
ev−→ P ′(x)

where x = map(ev)

Parallel composition is always synchronised over the intersection of alpha-
bets of both processes. We will use α(P ) as notion for the alphabet of process
P (the events a process is interested in).
Syntax:

Process ::= Process1|| Process2

Semantics:
P

ev−→ P ′

P||Q
ev−→ P ′||Q

where ev ∈ α(P ) \ α(Q)

Q
ev−→ Q′

P||Q
ev−→ P||Q′ where ev ∈ α(Q) \ α(P )

P
ev−→ P ′, Q ev−→ Q′

P||Q
ev−→ P||Q′ where ev ∈ α(Q) ∩ α(P )

Analogous to external choice we define a quantified parallel composition.
Semantically it is a parallel composition where for each new mapping result
we will get a new process instance.
Syntax:

Process ::= ||var:[map] Process1(var)

Semantics:

||v:[map]P (v) = ||∅v:mapP (v)

P (x)
ev−→ P ′(x)

||D
v:mapP (v)

ev−→ P ′(x)|| ||D∪x
v:mapP (v)

where x = map(ev) ∧ x ∩D = ∅

Whenever a named (parameterised) processes is defined the process iden-
tifier may be used where a process is expected.
Syntax:

ProcessDefinition ::= Id(Params, . . .){[Alphabet;]Process}
14



Brörkens and Möller

Proccess ::= ProcessId(Params, . . .)

Semantics:
P

ev−→ P ′

Id(p)
ev−→ P ′ where process(Id(p)) = P

A.3 Trace Semantics

The jassda Trace-Checker will test during runtime if the trace of the program’s
events belongs to the trace semantics of the specification. The process of the
first process definition in the specification defines this semantics.

The trace semantics of a process P is defined by collecting all event se-
quences that are possible with respect to the operational semantics. So the
empty sequence 〈〉 is always included and every initial event extended by any
trace of the subsequent process.

traces(P ) = {〈〉} ∪ {〈ev〉atr|∃P ′ : P
ev−→ P ′ ∧ tr ∈ traces(P ′)}

15


